1. พลังงานนิวเคลียร์จะประกอบไปด้วยอะไรบ้าง
ก. นิวตรอน
ข. โปรตอน
ค. อิเล็กตรอนและโปรตอน
ง. โปรตอนและนิวตรอน
ตอบ ง. โปรตอนและนิวตรอน
2. ข้อใดไม่ใช่ประโยชน์ของพลังงานนิวเคลียร์
ก. ในด้านการเกษตร ช่วยยืดอายุการเก็บรักษาพืชผัก
ข. ในด้านการแพทย์ ช่วยในการตรวจวินิจฉัยโรค
ค. ในด้านการขนส่ง ช่วยในการขับเคลื่อนของยานยนต์
ง.ในด้านอุตสาหกรรม ช่วยเพิ่มผลผลิตและลดต้นทุนการผลิต
ตอบ ค. ในด้านการขนส่ง ช่วยในการขับเคลื่อนของยานยนต์
3.ข้อใดไม่ใช่อันตรายที่เกิดจากการแผ่รังสีของกัมมันตภาพรังสี
ก. ทำให้ตาบอด
ข. ทำลายเนื้อเยื่อบางส่วนของร่างกาย
ค. ทำให้เกิดการผิดปกติของระบบการทำงานของร่างกาย
ง. เมื่อได้รับรังสีเข้าไปมากๆอาจจะทำให้เป็ดมะเร็งเม็ดเลือดขาว
ตอบ ก. ทำให้ตาบอด
4.พลังงานนิวเคลียร์เรียกอีกชื่อหนึ่งว่า
ก. พลังงานปรมณู
ข. พลังงานรังสีเอกซ์
ค. พลังงานอัลฟา
ง. พลังงานอะตอม
ตอบ ก. พลังงานปรมณู
5.ใครเป็นผู้ค้นพบการแผ่รังสีของกัมมันตภาพรังสี
ก. อองตวน อองรี แบ็กเกอแรล
ข. อัลเบริต์ ไอน์สไตน์
ค. เซอร์ ไอแซก นิวตัน
ง. เมนเดล
ตอบ ก. อองตวน อองรี แบ็กเกอแรล
6.ข้อใดไม่ใช่ธาตุที่ถูกปล่อยออกมาของกัมมันตภาพรังสี
ก. อนุภาคอัลฟา
ข. อนุภาคเบต้า
ค.รังสีแกมมา
ง.อนุภาคของอะตอม
ตอบ ง. อนุภาคของอะตอม
7.พลังงานในข้อใดที่ไม่ใช่พลังงานที่ถูกปล่อยออกมา
ก. คลื่นแม่เหล้กไฟฟ้า
ข. พลังงานความร้อน
ค. พลังงานแสง
ง. พลังงานไฟฟ้า
ตอบ ง. พลังงานไฟฟ้า
8.อนุภาคของรังสีแอลฟาจะประกอบไปด้วย
ก. โปรตอน1ตัว และนิวตรอน1ตัว
ข. โปรตอน1ตัวและนิวตรอน 2ตัว
ค. โปรตอน2ตัวและนิวตรอน2ตัว
ง. ไม่มีข้อใดถูก
ตอบ ค. โปรตอน2ตัวนิวตรอน2ตัว
9.รังสีแอลฟาเป็นธาตุของธาตุใด
ก. ธาตุฮีเลียม
ข. ธาตุไฮโรเจน
ค. ธาตุแคลเซียม
ง. ธาตุเหล็ก
ตอบ ก. ธาตุฮีเลียม
10.รังสีที่ถูกแผ่ออกมาแต่ละชนิดมีสมบัติแตกต่างกันหรือไม่
ก. ไม่แตกต่างกัน
ข. แตกต่างกัน
ค. เหมือนกัน
ง. ไม่เสถียร์
ตอบ ข. แตกต่างกัน
วันอาทิตย์ที่ 6 กันยายน พ.ศ. 2552
วันจันทร์ที่ 10 สิงหาคม พ.ศ. 2552
..การเคลื่อนที่..
การเคลื่อนที่
การเคลื่อนที่ (อังกฤษ: motion) คือ การเปลี่ยนตำแหน่งของวัตถุในช่วงเวลาหนึ่ง ซึ่งวัดโดยผู้สังเกตที่เป็นส่วนหนึ่งของกรอบอ้างอิง เมื่อปลายคริสต์ศตวรรษที่ 19 เซอร์ไอแซก นิวตัน ได้เสนอกฎการเคลื่อนที่ของนิวตันในหนังสือ Principia ของเขา ซึ่งต่อมาได้กลายเป็นกฎพื้นฐานของฟิสิกส์ดั้งเดิม การคำนวณการเคลื่อนที่ของวัตถุต่างๆ โดยใช้ฟิสิกส์ดั้งเดิมนั้นประสบความสำเร็จมาก จนกระทั่งนักฟิสิกส์เริ่มศึกษาเกี่ยวกับสิ่งที่เคลื่อนที่ด้วยความเร็วสูงมาก
นักฟิสิกส์พบว่า ฟิสิกส์ดั้งเดิมไม่สามารถคำนวณสิ่งที่เคลื่อนที่ด้วยความเร็วสูงได้แม่นยำ เพื่อแก้ปัญหานี้ อองรี ปวงกาเร และ อัลเบิร์ต ไอน์สไตน์ได้เสนอทฤษฎีอธิบายการเคลื่อนที่ของวัตถุ เพื่อใช้แทนของกฎของนิวตัน กฎการเคลื่อนที่ของนิวตันกำหนดให้อวกาศและเวลาเป็นสิ่งสัมบูรณ์ แต่ทฤษฎีไอน์สไตน์กับปวงกาเร ซึ่งเรียกว่า ทฤษฎีสัมพัทธภาพพิเศษ กำหนดให้ค่าเหล่านี้เป็นสิ่งสัมพัทธ์ ซึ่งต่อมา ทฤษฎีสัมพัทธภาพพิเศษก็เป็นที่ยอมรับในการอธิบายการเคลื่อนที่ เพราะทำนายผลลัพธ์ได้แม่นยำกว่า อย่างไรก็ตาม ในทางปฏิบัติ กฎการเคลื่อนที่ของนิวตันยังเป็นที่ใช้กันอยู่ โดยเฉพาะงานด้านฟิสิกส์ประยุกต์และงานวิศวกรรม เพราะสามารถคำนวณได้ง่ายกว่าทฤษฎีสัมพัทธภาพพิเศษ
วันอาทิตย์ที่ 9 สิงหาคม พ.ศ. 2552
..คลื่น..
คลื่น หมายถึง ลักษณะของการถูกรบกวน ที่มีการแผ่กระจาย เคลื่อนที่ออกไป ในลักษณะของการกวัดแกว่ง หรือกระเพื่อม และมักจะมีการส่งถ่ายพลังงานไปด้วย คลื่นเชิงกลซึ่งเกิดขึ้นในตัวกลาง (ซึ่งเมื่อมีการปรับเปลี่ยนรูป จะมีความแรงยืดหยุ่นในการดีดตัวกลับ) จะเดินทางและส่งผ่านพลังงานจากจุดหนึ่งไปยังอีกจุดหนึ่งในตัวกลาง โดยไม่ทำให้เกิดการเคลื่อนตำแหน่งอย่างถาวรของอนุภาคตัวกลาง คือไม่มีการส่งถ่ายอนุภาคนั่นเอง แต่จะมีการเคลื่อนที่แกว่งกวัด (oscillation) ไปกลับของอนุภาค อย่างไรก็ตามสำหรับ การแผ่รังสีคลื่นแม่เหล็กไฟฟ้า และ การแผ่รังสีแรงดึงดูด นั้นสามารถเดินทางในสุญญากาศได้ โดยไม่ต้องมีตัวกลาง
ลักษณะของคลื่นนั้น จะระบุจาก สันคลื่น หรือ ยอดคลื่น (ส่วนที่มีค่าสูงขึ้น) และ ท้องคลื่น (ส่วนที่มีค่าต่ำลง) ในลักษณะ ตั้งฉากกับทิศทางเดินคลื่น เรียก "คลื่นตามขวาง" (transverse wave) หรือ ขนานกับทิศทางเดินคลื่น เรียก "คลื่นตามยาว" (longitudinal wave)
แอมพลิจูด นั้นวัดจากขนาด ของการรบกวนตัวกลาง ที่มากที่สุด ในช่วงหนึ่งคาบ โดยมีหน่วยของการวัดขึ้นกับประเภทของคลื่น เช่น คลื่นในเส้นเชือกมีหน่วยการวัดเป็นระยะทาง (เช่น เมตร) ส่วนคลื่นเสียงมีหน่วยการวัดเป็นความดัน (เช่น ปาสกาล) และ คลื่นเม่เหล็กไฟฟ้า มีหน่วยการวัดเป็น ค่าตามขนาดสนามไฟฟ้า (โวลต์/เมตร) ค่าแอมพลิจูดนั้นอาจมีค่าเป็นคงที่ (เรียกคลื่นประเภทนี้ว่า คลื่นต่อเนื่อง (continuous wave) ย่อ c.w. หรือ อาจมีค่าเปลี่ยนแปลงตามเวลา และ ตำแหน่ง (หากคลื่นเคลื่อนที่ไปในทิศทาง ) การเปลี่ยนแปลงของแอมพลิจูด เรียกว่า ซอง (envelope) ของคลื่น คาบ เป็นช่วงเวลาที่คลื่นใช้ในการวนครบรอบในการกวัดแกว่ง ความถี่ คือ จำนวนรอบที่คลื่นกวัดแกว่งครบรอบ ในหนึ่งหน่วยเวลา (เช่น ใน 1 วินาที) และมีหน่วยของการวัดเป็น เฮิรตซ์ บางครั้งสมการทางคณิตศาสตร์ของคลื่นอาจอยู่ในรูปของ ความถี่เชิงมุม (en:angular frequency) นิยมใช้สัญญลักษณ์ และมีหน่วนเป็น เรเดียนต่อวินาที
ลักษณะของคลื่นนั้น จะระบุจาก สันคลื่น หรือ ยอดคลื่น (ส่วนที่มีค่าสูงขึ้น) และ ท้องคลื่น (ส่วนที่มีค่าต่ำลง) ในลักษณะ ตั้งฉากกับทิศทางเดินคลื่น เรียก "คลื่นตามขวาง" (transverse wave) หรือ ขนานกับทิศทางเดินคลื่น เรียก "คลื่นตามยาว" (longitudinal wave)
แอมพลิจูด นั้นวัดจากขนาด ของการรบกวนตัวกลาง ที่มากที่สุด ในช่วงหนึ่งคาบ โดยมีหน่วยของการวัดขึ้นกับประเภทของคลื่น เช่น คลื่นในเส้นเชือกมีหน่วยการวัดเป็นระยะทาง (เช่น เมตร) ส่วนคลื่นเสียงมีหน่วยการวัดเป็นความดัน (เช่น ปาสกาล) และ คลื่นเม่เหล็กไฟฟ้า มีหน่วยการวัดเป็น ค่าตามขนาดสนามไฟฟ้า (โวลต์/เมตร) ค่าแอมพลิจูดนั้นอาจมีค่าเป็นคงที่ (เรียกคลื่นประเภทนี้ว่า คลื่นต่อเนื่อง (continuous wave) ย่อ c.w. หรือ อาจมีค่าเปลี่ยนแปลงตามเวลา และ ตำแหน่ง (หากคลื่นเคลื่อนที่ไปในทิศทาง ) การเปลี่ยนแปลงของแอมพลิจูด เรียกว่า ซอง (envelope) ของคลื่น คาบ เป็นช่วงเวลาที่คลื่นใช้ในการวนครบรอบในการกวัดแกว่ง ความถี่ คือ จำนวนรอบที่คลื่นกวัดแกว่งครบรอบ ในหนึ่งหน่วยเวลา (เช่น ใน 1 วินาที) และมีหน่วยของการวัดเป็น เฮิรตซ์ บางครั้งสมการทางคณิตศาสตร์ของคลื่นอาจอยู่ในรูปของ ความถี่เชิงมุม (en:angular frequency) นิยมใช้สัญญลักษณ์ และมีหน่วนเป็น เรเดียนต่อวินาที
..สนามแม่เหล็ก..
เส้นแรงแม่เหล็ก
เส้นแรงแม่เหล็กวิ่งออกจากขั้วเหนือของแม่เหล็กและโค้งเข้าไปยังขั้วใต้ ด้วยนิยามอย่างเป็นทางการแล้ว เส้นแรงแม่เหล็กไม่ได้เป็นปริมาณเวกเตอร์ แต่เป็นเวกเตอร์เสมือน เท่านั้น แม้ว่าภาพต่างๆ มักจะแสดงเส้นแรงแม่เหล็กด้วยลูกศร แต่เราไม่สามารถแปลความหมายลูกศรนั้นเป็นการเคลื่อนที่หรือการไหลของเส้นสนาม ความสับสนในการเรียกชื่อขั้วแม่เหล็ก สิ่งสำคัญที่ควรจำคือ ป้ายขั้วเหนือใต้บนเข็มทิศนั้นเรียกสลับกับขั้วเหนือใต้ของแกนโลก ถ้าเรามีแม่เหล็กสองอันที่มีป้ายบอกขั้ว ก็ไม่ยากที่จะมองเห็นว่าขั้วเหมือนกันจะผลักกันและขั้วต่างกันดูดกัน แต่การมองแบบนี้ใช้ไม่ได้กับเข็มทิศทั่วไป เพราะสำหรับเข็มทิศแล้ว ด้านที่บอกว่าเหนือชี้ไปทางทิศเหนือไม่ใช่ทิศใต้ เรานิยมเรียกชื่อขั้วของก้อนแม่เหล็กตามทิศที่มันชี้ไป ดังนั้นเราจึงสามารถเรียกขั้วเหนือของแม่เหล็กได้อีกอย่างหนึ่งว่า ขั้วที่ชี้ไปทางเหนือ
คุณสมบัติ
แมกซ์เวลล์มีผลงานชิ้นสำคัญในการรวมปรากฏการณ์ไฟฟ้าและแม่เหล็กเข้าด้วยกัน และสร้างชุดสมการสี่สมการขึ้นเพื่ออธิบายปรากฏการณ์ที่เกี่ยวข้องกับสนามทั้งสองแบบ แต่ด้วยการอธิบายแบบแมกซ์เวลนี้ ยังคงมองปรากฏการณ์ทั้งสองแยกเป็นสนามสองชนิด ซึ่งมุมมองนี้เปลี่ยนไปเมื่อไอน์สไตน์ใช้หลักการของทฤษฎีสัมพัทธภาพพิเศษแสดงให้เห็นว่า ทั้งสองปรากฏการณ์เป็นเพียงด้านสองด้านของสิ่งเดียวกัน (เทนเซอร์ rank 2 อันหนึ่ง) และผู้สังเกตคนหนึ่งอาจจะรับรู้แรงแม่เหล็ก ในขณะที่ผู้สังเกตคนที่สองรับรู้เป็นแรงไฟฟ้าอย่างเดียวก็ได้ ดังนั้นในมุมมองของสัมพัทธภาพพิเศษ สนามแม่เหล็กจึงเป็นเพียงรูปหนึ่งของแรงไฟฟ้าที่เกิดจากประจุที่กำลังเคลื่อนที่อยู่เท่านั้น และสามารถจะคำนวณได้หากเรารู้แรงไฟฟ้าและการเคลื่อนที่ของประจุเทียบกับผู้สังเกต
เราสามารถใช้การทดลองในจินตนาการแสดงให้เห็นว่าคำกล่าวนี้เป็นจริง โดยพิจารณาเส้นประจุสองเส้นที่ขนานกันและยาวเป็นอนันต์ และอยู่นิ่งเมื่อเทียบกับกันและกัน แต่มีการเคลื่อนที่เทียบกับผู้สังเกตคนแรก. ผู้สังเกตอีกคนหนึ่งซึ่งกำลังเคลื่อนที่ไปกับเส้นประจุทั้งสอง (ที่ความเร็วเท่ากัน) จะรู้สึกได้เฉพาะแรงไฟฟ้าที่ผลักกันระหว่างประจุและความเร่งที่เกิดขึ้นจากแรงนี้ ส่วนผู้สังเกตคนแรกซึ่งอยู่นิ่งมองเห็นเส้นประจุทั้งสอง (และผู้สังเกตคนที่สอง) เคลื่อนที่ผ่านไปด้วยความเร็วค่าหนึ่ง และยังมองเห็นนาฬิกาของผู้สังเกตที่กำลังเคลื่อนที่นั้นเดินช้าลงด้วย (เนื่องจากเวลาหด (time dilation)) และดังนั้นจึงเห็นว่าความเร่งจากแรงผลักกันของเส้นประจุนั้นมีค่าน้อยลงด้วย เทียบกับความเร่งที่ผู้สังเกตคนที่สองรู้สึก การลดลงของความเร่งในทิศทางผลักกันนี้ สามารถมองในแง่กลศาสตร์ดั้งเดิมได้ว่า เป็นแรงดูดนั่นเอง และแรงดูดนี้มีค่ามากขึ้นเมื่อความเร็วสัมพัทธมีค่ามากขึ้น แรงเสมือนนี้ก็คือแรงแม่เหล็กไฟฟ้าในมุมมองเดิมของแมกซ์เวลนั่นเอง
จากกฎการเหนี่ยวนำของฟาราเดย์ สนามแม่เหล็กที่เปลี่ยนแปลงนั้นสามารถเหนี่ยวนำให้เกิดสนามไฟฟ้า(และกระแสไฟฟ้า) ได้ ปรากฏการณ์นี้เป็นพื้นฐานของเครื่องกำเนิดไฟฟ้าและมอเตอร์ไฟฟ้านั่นเอง
แมกซ์เวลล์มีผลงานชิ้นสำคัญในการรวมปรากฏการณ์ไฟฟ้าและแม่เหล็กเข้าด้วยกัน และสร้างชุดสมการสี่สมการขึ้นเพื่ออธิบายปรากฏการณ์ที่เกี่ยวข้องกับสนามทั้งสองแบบ แต่ด้วยการอธิบายแบบแมกซ์เวลนี้ ยังคงมองปรากฏการณ์ทั้งสองแยกเป็นสนามสองชนิด ซึ่งมุมมองนี้เปลี่ยนไปเมื่อไอน์สไตน์ใช้หลักการของทฤษฎีสัมพัทธภาพพิเศษแสดงให้เห็นว่า ทั้งสองปรากฏการณ์เป็นเพียงด้านสองด้านของสิ่งเดียวกัน (เทนเซอร์ rank 2 อันหนึ่ง) และผู้สังเกตคนหนึ่งอาจจะรับรู้แรงแม่เหล็ก ในขณะที่ผู้สังเกตคนที่สองรับรู้เป็นแรงไฟฟ้าอย่างเดียวก็ได้ ดังนั้นในมุมมองของสัมพัทธภาพพิเศษ สนามแม่เหล็กจึงเป็นเพียงรูปหนึ่งของแรงไฟฟ้าที่เกิดจากประจุที่กำลังเคลื่อนที่อยู่เท่านั้น และสามารถจะคำนวณได้หากเรารู้แรงไฟฟ้าและการเคลื่อนที่ของประจุเทียบกับผู้สังเกต
เราสามารถใช้การทดลองในจินตนาการแสดงให้เห็นว่าคำกล่าวนี้เป็นจริง โดยพิจารณาเส้นประจุสองเส้นที่ขนานกันและยาวเป็นอนันต์ และอยู่นิ่งเมื่อเทียบกับกันและกัน แต่มีการเคลื่อนที่เทียบกับผู้สังเกตคนแรก. ผู้สังเกตอีกคนหนึ่งซึ่งกำลังเคลื่อนที่ไปกับเส้นประจุทั้งสอง (ที่ความเร็วเท่ากัน) จะรู้สึกได้เฉพาะแรงไฟฟ้าที่ผลักกันระหว่างประจุและความเร่งที่เกิดขึ้นจากแรงนี้ ส่วนผู้สังเกตคนแรกซึ่งอยู่นิ่งมองเห็นเส้นประจุทั้งสอง (และผู้สังเกตคนที่สอง) เคลื่อนที่ผ่านไปด้วยความเร็วค่าหนึ่ง และยังมองเห็นนาฬิกาของผู้สังเกตที่กำลังเคลื่อนที่นั้นเดินช้าลงด้วย (เนื่องจากเวลาหด (time dilation)) และดังนั้นจึงเห็นว่าความเร่งจากแรงผลักกันของเส้นประจุนั้นมีค่าน้อยลงด้วย เทียบกับความเร่งที่ผู้สังเกตคนที่สองรู้สึก การลดลงของความเร่งในทิศทางผลักกันนี้ สามารถมองในแง่กลศาสตร์ดั้งเดิมได้ว่า เป็นแรงดูดนั่นเอง และแรงดูดนี้มีค่ามากขึ้นเมื่อความเร็วสัมพัทธมีค่ามากขึ้น แรงเสมือนนี้ก็คือแรงแม่เหล็กไฟฟ้าในมุมมองเดิมของแมกซ์เวลนั่นเอง
จากกฎการเหนี่ยวนำของฟาราเดย์ สนามแม่เหล็กที่เปลี่ยนแปลงนั้นสามารถเหนี่ยวนำให้เกิดสนามไฟฟ้า(และกระแสไฟฟ้า) ได้ ปรากฏการณ์นี้เป็นพื้นฐานของเครื่องกำเนิดไฟฟ้าและมอเตอร์ไฟฟ้านั่นเอง
..กัมมันตภาพรังสีและพลังงานนิวเคลียร์..
กัมมันตภาพรังสี
ในปี ค.ศ. 1896 นักฟิสิกส์ชาวฝรั่งเศส ชื่อ อองตวน อองรี แบ็กเกอแรล (Antoine Henri Becquerel, 1852-1908) ได้ค้นพบการแผ่รังสีของนิวเคลียสขึ้น จากการศึกษาเกี่ยวกับการแผ่รังสีฟิสิกส์นิวเคลียร์ต่อมาทำให้ทราบถึงธรรมชาติของธาตุ และสามารถนำเอาไปใช้ให้เป็นประโยชน์มาก เช่นนำไปใช้เพื่อการบำบัดรักษามะเร็ง การทำ CT SCANNERS เป็นต้นงวสงสวงสวงวสง
ตัวของธาตุกัมมันตรังสี
ธาตุกัมมันตรังสี (Radioactive Elements) หมายถึงนิวไคลด์หรือธาตุที่มีสภาพไม่เสถียร ซึ่งจะมีการสลายตัวของนิวเคลียสอยู่ตลอดเวลาทำให้กลายเป็น นิวไคลด์ ใหม่หรือธาตุ ในขณะเดียวกันก็สามารถปลดปล่อยรังสีได้
กัมมัตภาพรังสี (Radioactivity) เป็นปรากฎการณ์อย่างหนึ่งของสารที่มีสมบัติในการแผ่รังสีออกมาได้เอง กัมมันตภาพรังสี ที่แผ่ออกมามีอยู่3 ชนิดด้วยกัน คือ รังสีแอลฟา รังสีเบตา และรังสีแกมมา
โดยเมื่อนำสารกัมมันตรังสีใส่ลงในตะกั่วที่เจาะรูเอาไว้ให้รังสีออกทางช่องทางเดียวไป ผ่านสนามไฟฟ้า พบว่ารังสีหนึ่งจะเบนเข้าหาขั้วบวกคือรังสีเบตา อีกรังสีหนึ่งเบนเข้าหาขั้วลบคือรังสีแอลฟาหรืออนุภาคแอลฟา ส่วนอีกรังสีหนึ่งเป็นกลางทางไฟฟ้าจึงไม่ถูกดูดหรือผลักด้วยอำนาจแม่เหล็กหรืออำนาจนำไฟฟ้า ให้ชื่อรังสีนี้ว่า รังสีแกมมา ดังรูปที่ 4
รูปที่ 4 แสดงการเบี่ยงเบนของรังสีชนิดต่าง ๆ ในสนามไฟฟ้า
ก. รังสีแอลฟา (Alpha Ray) เกิดจากการสลายตัวของนิวเคลียสที่มีขนาดใหญ่และมีมวลมากเพื่อเปลี่ยนแปลงให้เป็นนิวเคลียสที่มีเสถียรภาพสูงขึ้น ซึ่งรังสีนี้ถูกปล่อยออกมาจากนิวเคลียสด้วยพลังงานต่าง ๆ กัน รังสีแอลฟาก็คือนิวเคลียสของฮีเลียม แทนด้วย มีประจุบวกมีขนาดเป็น 2 เท่าของประจุอิเล็กตรอน คือเท่ากับ +2e และมีนิวตรอน อีก 2 นิวตรอน (2n) มีมวลเท่ากับนิวเคลียสของฮีเลียมหรือประมาณ 7000 เท่าของอิเล็กตรอน เนื่องจากมีมวลมากจึงไม่ค่อยเกิดการเบี่ยงเบนง่ายนัก เมื่อวิ่งไปชนสิ่งกีดขวางต่าง ๆ เช่น ผิวหนัง แผ่นกระดาษ จะไม่สามารถผ่านทะลุไปได้ แต่จะถูกดูดซึมได้อย่างรวดเร็วแล้วจะถ่ายทอดพลังงานเกือบทั้งหมดออกไป ทำให้อิเล็กตรอนของอะตอมที่ถูกรังสีแอลฟาชนหลุดออกไป ทำให้เกิดกระบวนการที่เรียกว่า การแตกตัวเป็นไอออน
รูปที่ 5 แสดงการสลายตัวของสารแล้วให้รังสีแอลฟา
สมการการสลายตัวของสารกัมมันตรังสีที่ให้รังสีแอลฟา เป็นดังนี้
พลังงานนิวเคลียร์
จุดเริ่มต้นของปรมาณู
มนุษย์ในสมัยโบราณมีชีวิตความเป็นอยู่กับธรรมชาติ คอยเฝ้าสังเกตสิ่งต่าง ๆ รอบ ๆ ตัว และปรับ-
ปรุงหรือปฏิรูปชีวิตความเป็นอยู่ โดยใช้ความคิดไตร่ตรองเหตุผลที่เกี่ยวข้องซึ่งอาจผิดบ้างถูกบ้าง ตามสติปัญญา
และความพิถีพิถันในการนึกคิดเกี่ยวกับสิ่งต่าง ๆ นั้น
นักปราชญ์กรีก 2 ท่าน คือ ลิวคิปปุส แห่งมิเลตุส และเดโมไครตุส แห่งอับเดรา ได้ลงความเห็นว่า
สสารใด ๆ ก็ตาม จะต้องมีขนาดจำกัด คือไม่สามารถตัดแบ่งให้เล็กลง ๆ อย่างไม่มีที่สิ้นสุดได้ นั่นคือจะต้องมี
จุดหนึ่งซึ่งไม่อาจตัดแบ่งสสารนั้นได้อีก สิ่งซึ่งมีขนาดเล็กที่สุดที่ไม่อาจแบ่งแยกต่อไปได้อีกนั้นภาษากรีกเรียกว่า
ATOMOS
ความคิดเห็นเรื่องชิ้นส่วนที่เล็กที่สุดนั้นได้ลืมเลือนไปในสมัยต่อ ๆ มาจนกระทั่งในปี พ.ศ. 2346
นักเคมีชาวอังกฤษชื่อ จอห์น ดอลตัน จึงได้รื้อฟื้นทฤษฎีดังกล่าวขึ้นใหม่ โดยใช้ในการอธิบายว่าการที่สารเคมี
สามารถทำปฏิกิริยาทางเคมีได้ต่าง ๆ กันนั้นแท้จริงเกิดเนื่องจากสสารนั้นประกอบด้วยอนุภาคเล็ก ๆ ที่เป็นอิสระ
กล่าวคือธาตุชนิดต่าง ๆ ก็จะมีอนุภาคอิสระเล็ก ๆ ที่มีคุณลักษณะเฉพาะตัวอย่างเดียวกันอยู่รวมกัน และสาร
ประกอบต่าง ๆ นั้นแท้จริงเกิดมาจากอนุภาคขนาดเล็ก ๆ ของธาตุต่าง ๆ มาจับตัวอยู่รวมกันในสัดส่วนต่างกัน
นั่นเอง ดอลตันได้ตั้งชื่ออนุภาคเล็ก ๆ ที่เขาคิดว่ามีอยู่นั้นว่า ATOMS : อะตอม
ครั้นต่อมานักวิทยาศาสตร์ในยุคหลัง (เริ่มตั้งแต่ อองรี เบคเคอเรล ในปีพ.ศ.2539) ได้พบว่าอะตอม
มิใช่ชิ้นส่วนที่แบ่งแยกมิได้อีกต่อไป เพราะภายในอะตอมประกอบด้วย นิวเคลียสและอิเล็กตรอนโดยที่ในนิว-
เคลียสเองก็ยังมีอนุภาคอีก 2 ชนิดรวมอยู่ด้วยกันอีกด้วย ซึ่งอาจใช้กลวิธีทำให้เกิดปฏิกิริยาในนิวเคลียสจนกระ-
ทั่งอะตอมเกิดการแตกแยกต่อไปได้อีกด้วย
จากนั้นเรื่องราวของปรมาณูจึงเป็นที่รู้จักและมีผู้ศึกษาค้นคว้ากระทั่งถึงแก่นลึกมากขึ้น ๆ
ความหมายของปรมาณู หรืออะตอม (atom)
ปรมาณู หรืออะตอม คือ ชิ้นส่วนที่เล็กที่สุดของสสารที่ยังคง
คุณสมบัติของธาตุอยู่ได้ อะตอมประกอบด้วย 2 ส่วน คือ
- ส่วนแกนกลางที่เรียกว่านิวเคลียส ซึ่งเป็นส่วนที่มีมวลสาร
และอยู่ตรงใจกลางของอะตอม
- ส่วนกรอบคืออาณาบริเวณที่อนุภาคอิเล็กตรอนหมุนวนรอบ
นิวเคลียสอีกทีหนึ่ง
ความเกี่ยวพันกันของนิวเคลียสและนิวเคลียร์
นิวเคลียส (nucleus) คือ ส่วนที่เป็นแกนหรือแกนกลางของปรมาณูหรืออะตอมของธาตุต่าง ๆ
นั่นเอง นิวเคลียสประกอบด้วยอนุภาคโปรตอนและนิวตรอน ยึดอยู่ด้วยแรงนิวเคลียร์ (nuclear force) และ
ถ้าหากมีแรงกระทำทำให้เกิดการเปลี่ยนแปลงภายในนิวเคลียส เรียกว่า ปฏิกิริยานิวเคลียร์ (nuclear reaction)
นิวเคลียร์ (nuclear) เป็นคำคุณศัพท์ที่ใช้ขยายคำนามต่าง ๆ โดยมีความหมายว่า "เกี่ยวกับนิว-
เคลียส" ตัวอย่างเช่น
- พลังงานนิวเคลียร์ คือ พลังงานที่มีต้นกำเนิดมาจากการเปลี่ยนแปลงในนิวเคลียสของอะตอม
ของธาตุ
- ระเบิดนิวเคลียร์ หมายถึง วัตถุระเบิดซึ่งมาจากพลังงานนิวเคลียร์
- โรงไฟฟ้านิวเคลียร์ หมายถึง โรงไฟฟ้าที่ใช้ต้นกำเนิดพลังงานจากปฏิกิริยานิวเคลียร์
ขนาดของอะตอม (the size of atoms)
นิวเคลียสของอะตอมของธาตุต่าง ๆ มีรัศมีประมาณ 10-13 เซนติเมตร คิดเป็นพื้นที่ผิวก็คงไม่เกิน
10-14 ตารางเซนติเมตร แต่ขนาดของอะตอมใหญ่กว่าเพราะวัดเทียบจากวงโคจรของอิเล็กตรอนที่อยู่ล้อมรอบ
โดยพบว่าอะตอมปกติจะมีเส้นผ่านศูนย์กลาง 10-8 เซนติเมตรเท่านั้น
ไอโซโทป (isotope) และไอโซโทปรังสี (radioisotope)
อะตอมของธาตุใด ๆ มีค่าเลขเชิงอะตอมเท่ากัน (เป็นธาตุเดียวกัน) แต่อาจมีมวลเชิงอะตอมต่างกัน
(มีน้ำหนักของอะตอมต่างกัน) นั่นคือ นิวเคลียสใด ๆที่มีจะนวนโปรตอนเท่ากัน แต่มีจำนวนนิวตรอนต่างกันจะ
เรียกอะตอมเหล่านั้นว่าเป็นไอโซโทป เช่น และ ต่างก็เป็นไอโซโทปของธาตุคาร์บอน ตัวเลขด้านล่างซ้ายของ
อักษร C แสดงค่าจำนวนโปรตอนในนิวเคลียสหรือเลขเชิงอะตอม ตัวเลขบนซ้ายแสดงจำนวนโปรตอนและนิว-
ตรอนในนิวเคลียสหรือมวลเชิงอะตอมของธาตุนั้น ๆ โดยปกติไอโซโทปต่าง ๆ ของธาตุเดียวกันจะมีคุณสมบัติ
ทางเคมีเหมือน ๆ กัน แต่มีคุณสมบัติทางรังสีแตกต่างกันกล่าวคือ ไอโซโทปที่มีระดับพลังงานในนิวเคลียสมาก
เกินไปจะมีสภาพไม่อยู่ตัวจะมีการแผ่รังสีออกมา ไอโซโทปประเภทนี้เรียกว่าไอโซโทปรังสี ในขณะที่ไอโซโทป
ส่วนใหญ่อยู่ในสภาพคงตัวไม่มีการแผ่รังสี
กัมมันตภาพรังสี (radioactivity)
เป็นปรากฏการณ์การสลายตัวที่เกิดขึ้นเองของนิวเคลียสของอะตอมที่ไม่เสถียรตามปกติแล้วการที่
อะตอมสลายตัวมักมีการแผ่รังสีติดตามมาด้วย เช่น รังสีแอลฟา บีตา และแกมมา เป็นต้น โดยทั่วไปมักเรียก
สั้น ๆ ว่า "กัมมันตภาพ" หรือ "ความแรงรังสี" (activity) กัมมันตภาพหรือความแรงรังสีนี้มีหน่วยวัดเป็นเบคเคอ
เรล (Becquerel) โดยที่ 1 เบคเคอเรล เท่ากับ การสลายตัวของสารรังสี 1 อะตอมในหนึ่งวินาที ผู้ค้นพบปรา-
กฏการณ์กัมมันตภาพรังสี คือ อองรี เบคเคอเรล ชาวฝรั่งเศส ซึ่งได้ค้นพบเมื่อ ปี พ.ศ. 2439
กัมมันตรังสี (radioactive)
เป็นคำคุณศัพท์เพื่อขยายคำนาม หมายถึง "เกี่ยวข้องกับการแผ่รังสี" ตัวอย่างเช่น
- สารกัมมันตรังสี (radioactive substance) หมายถึง วัสดุที่สามารถแผ่รังสีได้ด้วยตนเอง
- กากกัมมันตรังสี (radioactive waste) หมายถึง ขยะหรือของเสียที่เจือปนด้วยสารกัมมันตรังสี
เป็นต้น
รังสี (radiation)
หมายถึง พลังงานที่แผ่กระจายจากต้นกำเนิด ออกไปในอากาศหรือตัวกลางใด ๆ ในรูปของคลื่น
แม่เหล็กไฟฟ้า เช่น รังสีความร้อน รังสีเอกซ์ รังสีแกมมา ฯลฯ และรวมไปถึงกระแสอนุภาคที่มีความเร็วสูงด้วย
อาทิเช่น รังสีแอลฟา รังสีบีตา และรังสีนิวตรอนอาจจำแนกรังสีดังกล่าวตามคุณสมบัติทางกายภาพได้เป็น 2
กลุ่ม คือ
- รังสีที่ไม่ก่อไอออน (non-ionizing radiation) ซึ่งได้แก่รังสีคลื่นแม่เหล็กไฟฟ้า เช่น ความร้อน แสง
เสียง คลื่นวิทยุ อัลตราไวโอเลตและไมโครเวฟ
- รังสีที่ก่อให้เกิดไอออน (ionizing radiation) ซึ่งได้แก่ รังสีเอกซ์ รังสีแกมมา รังสีแอลฟา รังสีบีตา
และรังสีนิวตรอน รังสีในกลุ่มหลังนี้มีผู้เรียกอีกชื่อหนึ่งว่า รังสีปรมาณู (atomic radiation)
รังสีแอลฟา หมายถึง กระแสอนุภาคแอลฟาที่แผ่ออกมาจากนิวเคลียสใด ๆ มีอำนาจก่อให้เกิดการแตกตัวได้ดี
แต่มีความสามารถในการทะลุทะลวงผ่านวัตถุน้อยมาก อนุภาคแอลฟา 1 อนุภาค ก็คือ นิวเคลียสของธาตุฮี-
เลียม ซึ่งประกอบด้วยโปรตอน 2 อนุภาค และนิวตรอน 2 อนุภาค และมีประจุไฟฟ้า +2 หน่วย
รังสีบีตา หมายถึง กระแสของอนุภาคอิเล็กตรอนที่แผ่ออกมาจากนิวเคลียสใด ๆ มีอำนาจก่อให้เกิดการแตกตัว
น้อยกว่ารังสีแอลฟา แต่สามารถทะลุทะลวงได้ดีกว่า ตามปกติในนิวเคลียสไม่มีอิเล็กตรอน แต่เมื่อเกิดการแตก-
ตัวของนิวตรอน จะเกิดเป็นอนุภาคโปรตอนและอิเล็กตรอน ซึ่งอิเล็กตรอนนี้เองที่เรียกว่า อนุภาคบีตา
รังสีแกมมา เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก มีจุดกำเนิดจากนิวเคลียส มีอำนาจทำให้เกิด
การแตกตัวน้อยมาก แต่มีความสามารถทะลุทะลวงสูง
รังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมากเช่นกัน มีคุณสมบัติเช่นเดียวกับรังสีแกมมา แต่
มิได้มาจากนิวเคลียสแต่มีจุดกำเนิดจากชั้นของอิเล็กตรอนของอะตอมใด ๆ เช่น เกิดจากการยิงอิเล็กตรอนที่มี
ความเร็วสูงไปถูกเป้าที่ทำด้วยโลหะดังเช่นที่เกิดในเครื่องเอกซ์เรย์ เป็นต้น
รังสีนิวตรอน เกิดขึ้นในเครื่องเร่งอนุภาคนิวตรอน หรือในเครื่องปฏิกรณ์ปรมาณู โดยในเครื่องดังกล่าวจะผลิต
อนุภาคนิวตรอนได้อย่างมากมายและนิวตรอนที่เกิดเหล่านั้นมีปริมาณมากและเคลื่อนที่ด้วยความเร็วสูงมาก
พลังงานนิวเคลียร์ พลังงานปรมาณู (nuclear energy/atomic energy)
เป็นคำที่มีความหมายเดียวกันคือ พลังงานไม่ว่าในลักษณะใด ซึ่งเกิดจากการปลดปล่อยออกมา
เมื่อมีการแยก รวมหรือแปลง นิวเคลียสของอะตอม ซึ่งพลังงานเหล่านั้นอาจเป็นพลังงานความร้อนและพลัง-
งานรังสี อันมีผลโดยตรงจากการที่มวลสารเปลี่ยนสภาพเป็นพลังงานตามทฤษฎีสัมพัทธภาพแห่งสสารและ
พลังงาน (E=mc2) ของไอน์สไตน์ และในความหมายภาษาไทย พลังงานปรมาณูยังหมายความรวมถึงพลังงาน
จากรังสีเอกซ์ด้วย
รูปแบบของพลังงานนิวเคลียร์
สามารถถูกจัดแบ่งออกได้เป็น 3 ประเภท ตามลักษณะวิธีการปลดปล่อยพลังงานออกมา คือ
1. พลังงานนิวเคลียร์ที่ถูกปลดปล่อยออกมาในลักษณะเฉียบพลัน
เป็นปฏิกิริยานิวเคลียร์ที่ควบคุมไม่ได้ (uncontrolled nuclear reactions) พลังงานของปฏิกิริยา
จะเพิ่มสูงขึ้นอย่างรวดเร็ว เป็นเหตุให้เกิดการระเบิด (nuclear explosion) สิ่งประดิษฐ์ที่ใช้หลักการเช่นนี้ ได้แก่
ระเบิดปรมาณู (Atomic bomb) หรือระเบิดไฮโดรเจน และหัวรบนิวเคลียร์แบบต่าง ๆ (ของอเมริกาเรียกว่าจรวด
Pershing, ของรัสเซียเรียกว่า จรวด SS-20) การใช้ระเบิดนิวเคลียร์ในโครงการด้านสันติ เช่น การขุดหลุมลึก
(Cratering) ขนาดใหญ่ ตัวอย่างเช่น เคยมีโครงการจะนำมาใช้ขุดคลองที่คอคอดกระ จังหวัดระนอง เพื่อทำ
เป็นคลองน้ำลึก สำหรับให้เรือสินค้า เรือเดินสมุทรแล่นผ่าน โดยไม่ต้องอ้อมประเทศมาเลเซีย การขุดอ่างเก็บน้ำ
การทำท่าเรือน้ำลึก และการตัดช่องเขา เป็นต้น การขุดทำโพรงใต้ดิน (Contained explosion) สำหรับกระตุ้น
แหล่งน้ำมันหรือแก๊สธรรมชาติในชั้นหินลึก และในการผลิตแหล่งแร่ เป็นต้น
2. พลังงานจากปฏิกิริยานิวเคลียร์ ซึ่งควบคุมได้
ในปัจจุบันปฏิกิริยานิวเคลียร์ซึ่งควบคุมได้ตลอดเวลา (controlled nuclear reaction) ซึ่งมนุษย์
ได้นำเอาหลักการมาพัฒนาขึ้นจนถึงขั้นที่นำมาใช้ประโยชน์ในระดับขั้นการค้าหรือบริการสาธารณูปโภคได้แล้ว
มีอยู่แบบเดียว คือ ปฏิกิริยาฟิชชันห่วงโซ่ของไอโซโทปยูเรเนียม -235 และของไอโซโทปที่แตกตัวได้ (fissile iso-
topes) อื่น ๆ อีก 2 ชนิด (ยูเรเนียม -233 และพลูโตเนียม -239) ส่วนปฏิกิริยาการรวมตัว (fusion) ของไอโซโทป
ต่าง ๆ ของไฮโดรเจนหรือที่เรียกกันอีกอย่างหนึ่งว่า ปฏิกิริยาเทอร์โมนิวเคลียร์นั้น มนุษย์ยังคงค้นพบวิธีควบคุมได้
เฉพาะในบรรยากาศพิเศษของห้องทดลอง ในโครงการระหว่างประเทศ ชื่อ International Thermonuclear
Experimental Reactor (ITER) ซึ่งคาดการณ์ว่าจะสามารถใช้พลังงานมาผลิตกระแสไฟฟ้าได้ในอนาคต ปี
ค.ศ. 2050 ดังนั้น จึงยังไม่อาจนำมาใช้ประโยชน์ในทางสันติในเชิงการค้าได้
สิ่งประดิษฐ์ซึ่งทำงานโดยหลักการของปฏิกิริยาฟิชชันห่วงโซ่ของเชื้อเพลิงนิวเคลียร์ ซึ่งมีที่ใช้กันอย่าง
แพร่หลายอยู่ในปัจจุบัน ได้แก่ เครื่องปฏิกรณ์นิวเคลียร์ หรือเครื่องปฏิกรณ์ปรมาณู (nuclear reactors) หรือที่
บางท่านอาจนิยมเรียกว่า เตาปฏิกรณ์ฯ บ้าง หรือเตาปรมาณูบ้าง
การที่มีผู้นิยมเรียก เครื่องปฏิกรณ์นิวเคลียร์ว่า "เตาปรมาณู" นั้น อาจกล่าวได้ว่าเป็นไปตามแนวคิด
ที่ถูกทาง เพราะเมื่อมองในแง่ของการใช้งานแล้ว เครื่องปฏิกรณ์นิวเคลียร์ ก็คือ ระบบอุปกรณ์ที่ใช้ปลดปล่อย
พลังงานที่ถูกกักไว้ในแกนกลาง (นิวเคลียส) ของปรมาณูของไอโซโทปที่แตกตัวได้ให้ออกมาเป็นพลังงานความ
ร้อน ซึ่งเราอาจนำไปใช้ประโยชน์ต่อไปได้นั่นเอง
3. พลังงานนิวเคลียร์จากสารกัมมันตรังสี
สารกัมมันตรังสีหรือสารรังสี (radioactive material) คือสารที่องค์ประกอบส่วนหนึ่งมีลักษณะ
เป็นไอโซโทปที่มีโครงสร้างปรมาณูไม่คงตัว (unstable isotipe) และจะสลายตัวโดยการปลดปล่อยพลังงาน
ส่วนเกินออกมาในรูปของรังสีแอลฟา รังสีบีตา รังสีแกมมา หรือรังสีเอกซ์ รูปใดรูปหนึ่ง หรือมากกว่าหนึ่งรูป
พร้อม ๆ กัน ไอโซโทปที่มีคุณสมบัติดังกล่าวนี้เรียกว่า ไอโซโทปกัมมันตรังสี หรือไอโซโทปรังสี (radioisotope)
คุณสมบัติที่สำคัญอีกประการหนึ่งของไอโซโทปรังสีคือ อัตราการสลายตัวด้วยค่าคงตัว เรียกว่า
"ครึ่งชีวิต" (half life) ซึ่งหมายถึง ระยะเวลาที่ไอโซโทปจำนวนหนึ่งสลายตัวลดลงเพียงครึ่งหนึ่งของจำนวนเดิม
ตัวอย่างเช่น ทอง-198 ซึ่งเป็นไอโซโทปที่ใช้รังสีแกมมารักษาโรคมะเร็ง มีครึ่งชีวิต 2.7 วันหมายความว่า ถ้าท่าน
ซื้อทอง-198 มา 10 กรัม หลังจากนั้น 2.7 วัน ท่านจะมีทองเหลืออยู่เพียง 5 กรัมและต่อไปอีก 2.7 วัน ก็จะเหลือ
อยู่เพียง 2.5 กรัม
วันจันทร์ที่ 25 พฤษภาคม พ.ศ. 2552
วิจารณ์การบรรยายของเพื่อนในชั้น
กลุ่มที่1 กลุ่มZazab09
เนื้อหา ไม่ค่อยครบถ้วนใจความยังไม่สมบูรณ์
การบรรยาย ใช้ได้ กระชับ รวดเร็ว ฟังรู้เรื่อง
กลุ่มที่2 กลุ่มAomtiz
เนื้อหา ค่อนข้างจะครบถ้วน เนือ้หาชัดเจน
การบรรยาย ผู้บรรยายบรรยายชัดเจนผู้ฟังฟังแล้วสามารถเข้าใจได้ดี
กลุ่มที่3 กลุ่ม Poolto (กลุ่มของข้าพเจ้า)
กลุ่มที่4 กลุ่ม Pooltoeto
เนือ้หา ข้อมูลไม่ค่อยครบถ้วน มีเนื้อหาไม่ค่อยตรงกับหัวเรื่องเท่าไหร่
การบรรยาย บรรยายชัดเจน แต่ขาดความมั่นใจในการออกไปนำเสนอหน้าชั้น
กลุ่มที่5 กลุ่ม Shabushi
เนื้อหา ข้อมูลไม่ชัดเจน แต่ว่าพอจะมีใจความสำคัญอยู่บ้าง
การบรรยาย บรรยายชัดเจน ทำให้ผู้ฟังเข้าใจได้
กลุ่มที่6 Superkyumin
เนือ้หา ครบถ้วนสมบูรณ์
การบรรยาย บรรยายชัดถ้อยชัดคำ มีการเว้นวรรคได้เหมาะสม
กลุ่มที่7 Scientist
เนื้อหา เนือ้หาเยอะ แต่ไม่มีชัดเจน เพราะขาดใจความสำคัญไปอยู่
การบรรยาย บรรยายชัดเจน แต่เว้นวรรค์ไม่ถูกต้องเป็นบางส่วน
กลุ่มที่8 Atomlizd
เนื้อหา เนื้อหาเยอะ แต่ยังไม่ได้สรุปใจความให้ชัดเจน
การบรรยาย ผู้บรรยายบรรยายเสียงไม่ค่อยดังจึงฟังแล้วไม่ค่อยรู้เรื่อง บรรยายไม่ครบถ้วน ไม่ได้ใจความ
กลุ่มที่9 Jungkosabza
เนื้อหา มีใจความสำคัญเพียงบางส่วนเท่านั้น เนื้อหายังไม่ครบถ้วนนัก
การบรรยาย ผู้บรรยายมีความมั่นใจดี ออกมาพูดด้วยน้ำเสียงชัดเจน แต่ว่าบรรยายเร็วไปหน่อย
เนื้อหา ไม่ค่อยครบถ้วนใจความยังไม่สมบูรณ์
การบรรยาย ใช้ได้ กระชับ รวดเร็ว ฟังรู้เรื่อง
กลุ่มที่2 กลุ่มAomtiz
เนื้อหา ค่อนข้างจะครบถ้วน เนือ้หาชัดเจน
การบรรยาย ผู้บรรยายบรรยายชัดเจนผู้ฟังฟังแล้วสามารถเข้าใจได้ดี
กลุ่มที่3 กลุ่ม Poolto (กลุ่มของข้าพเจ้า)
กลุ่มที่4 กลุ่ม Pooltoeto
เนือ้หา ข้อมูลไม่ค่อยครบถ้วน มีเนื้อหาไม่ค่อยตรงกับหัวเรื่องเท่าไหร่
การบรรยาย บรรยายชัดเจน แต่ขาดความมั่นใจในการออกไปนำเสนอหน้าชั้น
กลุ่มที่5 กลุ่ม Shabushi
เนื้อหา ข้อมูลไม่ชัดเจน แต่ว่าพอจะมีใจความสำคัญอยู่บ้าง
การบรรยาย บรรยายชัดเจน ทำให้ผู้ฟังเข้าใจได้
กลุ่มที่6 Superkyumin
เนือ้หา ครบถ้วนสมบูรณ์
การบรรยาย บรรยายชัดถ้อยชัดคำ มีการเว้นวรรคได้เหมาะสม
กลุ่มที่7 Scientist
เนื้อหา เนือ้หาเยอะ แต่ไม่มีชัดเจน เพราะขาดใจความสำคัญไปอยู่
การบรรยาย บรรยายชัดเจน แต่เว้นวรรค์ไม่ถูกต้องเป็นบางส่วน
กลุ่มที่8 Atomlizd
เนื้อหา เนื้อหาเยอะ แต่ยังไม่ได้สรุปใจความให้ชัดเจน
การบรรยาย ผู้บรรยายบรรยายเสียงไม่ค่อยดังจึงฟังแล้วไม่ค่อยรู้เรื่อง บรรยายไม่ครบถ้วน ไม่ได้ใจความ
กลุ่มที่9 Jungkosabza
เนื้อหา มีใจความสำคัญเพียงบางส่วนเท่านั้น เนื้อหายังไม่ครบถ้วนนัก
การบรรยาย ผู้บรรยายมีความมั่นใจดี ออกมาพูดด้วยน้ำเสียงชัดเจน แต่ว่าบรรยายเร็วไปหน่อย
วันอาทิตย์ที่ 24 พฤษภาคม พ.ศ. 2552
ฟิสิกส์
ฟิสิกส์ คือ พื้นฐานของวิทยาศาสตร์ที่ว่าด้วยการคำนวณ และกานศึกษาเกี่ยวกับกฎเกณฑ์ของธรรมชาติ
ฟิสิกส์ เป็นการศึกษาเกี่ยวกับสมบัติของสสารทั่วๆ ไป และพลังงานไม่เกี่ยวข้องกับสารใดสารหนึ่งโดยเฉพาะ วิทยาศาสตร์ที่ว่าด้วยสารใดสารหนึ่งโดยเฉพาะคือ เคมี ฟิสิกส์เป็นวิชาที่กว้างกว่าเคมี เพราะสสารมีความหมายกว้างกว่าสารที่เราอาจจะเอาใส่ขวดได้มากนัก สสารหมายถึงทุกสิ่งทุกอย่างที่มีตัวตนในเอกภพ รวมทั้ง แสง ไฟฟ้า และพลังงาน สิ่งเหล่านี้มีความเกี่ยวข้องกันทั้งสิ้น เพราะสสารประกอบไปด้วยอะตอม ซึ่งมีอิเล็กตรอนเป็นองค์ประกอบและอิเล็กตรอนก็คือไฟฟ้า อะตอมอาจจะเปลี่ยนไปเป็นแสงได้ และแสงก็เป็นพลังงานรูปหนึ่ง ในลูกระเบิดปรมาณู สารที่เป็นของแข็งธรรมดา (ในกรณีนี้ หมายถึงโลหะยูเรเนียม-235) เปลี่ยนเป็นพลังงานความร้อนที่ได้จากการระเบิดซึ่งก็เป็นรูปหนึ่งของพลังงาน
การศึกษา เรื่องพลังงานที่เกี่ยวกับการเคลื่อนที่ของสสารและปฏิกิริยาของมวลสารเมื่อมีแรงมากระทำ มีชื่อว่า “กลศาสตร์” หรือ “เมคานิกส์” วิศวกรผู้ซึ่งนำกลศาสตร์ไปใช้ต้องเรียนรู้เกี่ยวกับคุณสมบัติของสารนั้นๆ ด้วย สารแต่ละอย่างมีสมบัติที่แตกต่างกันไป บางชนิดคล้ายสปริง บางชนิดยืดหดได้ บางชนิดแข็งแกร่ง และบางชนิดเหนียวหนืด แรงที่ต้องใช้ในการดึงลวดให้ขาด มีความสำคัญน่าศึกษาพอๆ กับความเสียดทาน ซึ่งเกิดขึ้นเมื่อวัตถุชิ้นหนึ่งขัดสีกับวัตถุอีกชิ้นหนึ่ง หัวข้อต่างๆ เหล่านี้เป็นการศึกษาในฟิสิกส์อีกแขนงหนึ่งชื่อว่า “สมบัติของสสาร” ซึ่งรวมทั้งสมบัติของก๊าซ และของเหลวด้วย
……………………………………………………………………………………………………..
ปริมาณทางฟิสิกส์ มี 2 ชนิด • ปริมาณสเกลลา • ปริมาณเวกเตอร์
ปริมาณสเกลลา คือ ปริมาณที่กำหนดแต่เพียงขนาด ก็มีความหมาย ตัวอย่างของปริมาณสเกลลา ได้แก่ จำนวนนับของสิ่งของโดยทั่วไป ระยะทาง เวลา พื้นที่ งาน พลังงาน กระแสไฟฟ้า เป็นต้น การคำนวณปริมาณสเกลลา สามารถดำเนินการ บวก ลบ คูณ หาร เหมือนกับการคำนวณในระบบจำนวนทั่ว ๆ ไป จำนวน 0 ของปริมาณสเกลลา เป็น 0 อ้างอิง ไม่ได้หมายความว่ามีค่าเป็นศูนย์จริง เช่น อุณหภูมิ 0 เซลเซียส ไม่ได้หมายความว่าวัดอุณหภูมิไม่ได้ แต่กำหนดให้อุณหภูมิขณะนั้นเป็นศูนย์ และอุณหภูมิ -1 เซลเซียสเป็นอุณหภูมิที่ต่ำกว่าศูนย์เซลเซียสอยู่ 1 เซลเซียส เป็นต้น ปริมาณสเกลลาที่เป็นลบจึงเป็นปริมาณที่มีค่าน้อยกว่าศูนย์
ปริมาณเวกเตอร์ คือ ปริมาณที่ต้องกำหนดทั้งขนาดและทิศทางจึงจะมีความหมาย ตัวอย่างของปริมาณเวกเตอร์ ได้แก่ แรง การกระจัด ความเร็ว ความเร่ง เป็นต้น เนื่องจากปริมาณเวกเตอร์มีทั้งขนาดและทิศทาง การคำนวณจึงต้องมีวิธีการที่แตกต่างออกไปจากการคำนวณในระบบจำนวน ไม่สามารถดำเนินการบวก ลบ คูณ หารแบบธรรมดาได้ จึงต้องใช้วิธีการคำนวณเวกเตอร์โดยเฉพาะ จำนวน 0 ในปริมาณเวกเตอร์ เป็นปริมาณที่ไม่มีค่าจริง ๆ ปริมาณเวกเตอร์จึงไม่มีค่าเป็นลบ เครื่องหมายในปริมาณเวกเตอร์ใช้บอกทิศทางของเวกเตอร์ เวกเตอร์ที่มีเครื่องหมายเหมือนกันทิศทางเดียวกัน เวกเตอร์ที่มีเครื่องตรงกันข้ามทิศทางตรงกันข้าม
……………………………………………………………………………………………………….
ฟิสิกส์ เป็นการศึกษาเกี่ยวกับสมบัติของสสารทั่วๆ ไป และพลังงานไม่เกี่ยวข้องกับสารใดสารหนึ่งโดยเฉพาะ วิทยาศาสตร์ที่ว่าด้วยสารใดสารหนึ่งโดยเฉพาะคือ เคมี ฟิสิกส์เป็นวิชาที่กว้างกว่าเคมี เพราะสสารมีความหมายกว้างกว่าสารที่เราอาจจะเอาใส่ขวดได้มากนัก สสารหมายถึงทุกสิ่งทุกอย่างที่มีตัวตนในเอกภพ รวมทั้ง แสง ไฟฟ้า และพลังงาน สิ่งเหล่านี้มีความเกี่ยวข้องกันทั้งสิ้น เพราะสสารประกอบไปด้วยอะตอม ซึ่งมีอิเล็กตรอนเป็นองค์ประกอบและอิเล็กตรอนก็คือไฟฟ้า อะตอมอาจจะเปลี่ยนไปเป็นแสงได้ และแสงก็เป็นพลังงานรูปหนึ่ง ในลูกระเบิดปรมาณู สารที่เป็นของแข็งธรรมดา (ในกรณีนี้ หมายถึงโลหะยูเรเนียม-235) เปลี่ยนเป็นพลังงานความร้อนที่ได้จากการระเบิดซึ่งก็เป็นรูปหนึ่งของพลังงาน
การศึกษา เรื่องพลังงานที่เกี่ยวกับการเคลื่อนที่ของสสารและปฏิกิริยาของมวลสารเมื่อมีแรงมากระทำ มีชื่อว่า “กลศาสตร์” หรือ “เมคานิกส์” วิศวกรผู้ซึ่งนำกลศาสตร์ไปใช้ต้องเรียนรู้เกี่ยวกับคุณสมบัติของสารนั้นๆ ด้วย สารแต่ละอย่างมีสมบัติที่แตกต่างกันไป บางชนิดคล้ายสปริง บางชนิดยืดหดได้ บางชนิดแข็งแกร่ง และบางชนิดเหนียวหนืด แรงที่ต้องใช้ในการดึงลวดให้ขาด มีความสำคัญน่าศึกษาพอๆ กับความเสียดทาน ซึ่งเกิดขึ้นเมื่อวัตถุชิ้นหนึ่งขัดสีกับวัตถุอีกชิ้นหนึ่ง หัวข้อต่างๆ เหล่านี้เป็นการศึกษาในฟิสิกส์อีกแขนงหนึ่งชื่อว่า “สมบัติของสสาร” ซึ่งรวมทั้งสมบัติของก๊าซ และของเหลวด้วย
……………………………………………………………………………………………………..
ปริมาณทางฟิสิกส์ มี 2 ชนิด • ปริมาณสเกลลา • ปริมาณเวกเตอร์
ปริมาณสเกลลา คือ ปริมาณที่กำหนดแต่เพียงขนาด ก็มีความหมาย ตัวอย่างของปริมาณสเกลลา ได้แก่ จำนวนนับของสิ่งของโดยทั่วไป ระยะทาง เวลา พื้นที่ งาน พลังงาน กระแสไฟฟ้า เป็นต้น การคำนวณปริมาณสเกลลา สามารถดำเนินการ บวก ลบ คูณ หาร เหมือนกับการคำนวณในระบบจำนวนทั่ว ๆ ไป จำนวน 0 ของปริมาณสเกลลา เป็น 0 อ้างอิง ไม่ได้หมายความว่ามีค่าเป็นศูนย์จริง เช่น อุณหภูมิ 0 เซลเซียส ไม่ได้หมายความว่าวัดอุณหภูมิไม่ได้ แต่กำหนดให้อุณหภูมิขณะนั้นเป็นศูนย์ และอุณหภูมิ -1 เซลเซียสเป็นอุณหภูมิที่ต่ำกว่าศูนย์เซลเซียสอยู่ 1 เซลเซียส เป็นต้น ปริมาณสเกลลาที่เป็นลบจึงเป็นปริมาณที่มีค่าน้อยกว่าศูนย์
ปริมาณเวกเตอร์ คือ ปริมาณที่ต้องกำหนดทั้งขนาดและทิศทางจึงจะมีความหมาย ตัวอย่างของปริมาณเวกเตอร์ ได้แก่ แรง การกระจัด ความเร็ว ความเร่ง เป็นต้น เนื่องจากปริมาณเวกเตอร์มีทั้งขนาดและทิศทาง การคำนวณจึงต้องมีวิธีการที่แตกต่างออกไปจากการคำนวณในระบบจำนวน ไม่สามารถดำเนินการบวก ลบ คูณ หารแบบธรรมดาได้ จึงต้องใช้วิธีการคำนวณเวกเตอร์โดยเฉพาะ จำนวน 0 ในปริมาณเวกเตอร์ เป็นปริมาณที่ไม่มีค่าจริง ๆ ปริมาณเวกเตอร์จึงไม่มีค่าเป็นลบ เครื่องหมายในปริมาณเวกเตอร์ใช้บอกทิศทางของเวกเตอร์ เวกเตอร์ที่มีเครื่องหมายเหมือนกันทิศทางเดียวกัน เวกเตอร์ที่มีเครื่องตรงกันข้ามทิศทางตรงกันข้าม
……………………………………………………………………………………………………….
สมัครสมาชิก:
บทความ (Atom)